

ISTITUTO DI ISTRUZIONE SECONDARIA "DANIELE CRESPI"

Liceo Internazionale Classico e Linguistico VAPC02701R Liceo delle Scienze Umane VAPM027011

Via G. Carducci 4 – 21052 BUSTO ARSIZIO (VA)

<u>www.liceocrespi.it</u>-*Tel. 0331 633256 - Fax 0331 674770 - E-mail: lccrespi@tin.it*C.F. 81009350125 - Cod.Min. VAIS02700D

CISQUERT UNI EN ISO 9001: 2008

CertINT® 2010

Anno Scolastico 2010-2011 Classi del quarto anno

Compiti per le vacanze di MATEMATICA

- Rivedere gli argomenti teorici sul testo
- per chi ha riportato la votazione
 - o <u>6</u>: tutti gli esercizi
 - o <u>7</u> o <u>8</u>: metà degli esercizi per ogni argomento
 - o **9** o **10**: il 25% degli esercizi per ogni argomento
- Controllo del lavoro: prima ora di matematica a.s. 2011-12

Indicazioni per il recupero e per il consolidamento di MATEMATICA

- Per ogni argomento:
 - o rivedere la teoria sul testo
 - o eseguire nell'ordine gli esercizi sotto elencati
- Si raccomanda l'ordine nello svolgimento del lavoro
- Il lavoro estivo è finalizzato al ripasso e al consolidamento degli argomenti studiati nel corso dell'anno; pertanto
 deve essere svolto con continuità e gradualità, evitando di concentrare tutto in pochissimo tempo
- Consegnare il lavoro sotto indicato, ordinato per argomento, nel giorno stabilito dal DS: lunedì 29 agosto

GEOMETRIA ANALITICA

Circonfere

Scrivere le equazioni delle circonferenze di centro C e raggio r.

1.
$$C(-2; 0)$$
 $r = 1$

$$x^2 + y^2 + 4x + 3 = 0$$

2.
$$C(0; \sqrt{2})$$
 $r = \sqrt{2}$

$$x^2 + y^2 - 2\sqrt{2}y = 0$$

3.
$$C\left(\frac{1}{2}; \frac{3}{4}\right)$$
 $r = \frac{1}{2}$

$$16x^2 + 16y^2 - 16x - 24y + 9 = 0$$

Verificare se le equazioni date rappresentano circonferenze reali; in caso affermativo determinarne centro e raggio.

4.
$$x^2 + y^2 + 9 = 0$$

5.
$$x^2 + y^2 - 4x = 0$$

Sì,
$$C(2; 0)$$
; $r = 2$

6.
$$x^2 + y^2 - 2x - 2y = 0$$

Sì;
$$C(1; 1)$$
; $r = \sqrt{2}$

7.
$$x^2 + y^2 - 4x - 2y + 25 = 0$$

8.
$$x^2 + y^2 - 3x - 3y + 1 = 0$$

Sì;
$$C(\frac{3}{2}; \frac{3}{2})$$
; $r = \sqrt{\frac{7}{2}}$

9.
$$5x^2 + 5y^2 - x - y + 4 = 0$$

- Scrivere l'equazione della circonferenza che ha per diametro il segmento AB con A(1; 0) e B(3; 2). $(x-2)^2 + (y-1)^2 = 2$
- 11. Scrivere l'equazione della circonferenza avente centro in (1; 3) e tangente alla retta di equazione: 4x 5y + 1 = 0 $(x-1)^2 + (y-3)^2 = \frac{100}{41}$
- 12. Scrivere l'equazione della circonferenza passante per A(1; 4) e B(-2; 1) e avente il centro C sulla retta 3x y + 4 = 0.

$$x^2 + y^2 + x - 5y + 2 = 0$$

Determinare l'equazione della circonferenza di centro C(2; 1) e tangente all'asse del segmento di estremi A(-2; 0) e B(1; 2). Determinare l'area del triangolo ABC.

$$x^{2} + y^{2} - 4x - 2y + \frac{35}{52} = 0$$
; area = $\frac{5}{2}$

14. Dopo aver verificato che il triangolo di vertici A(1; -1), B(3; 1) e C(-1; 3) è isoscele, scrivere l'equazione della circonferenza ad esso circoscritta.

$$\left(x-\frac{2}{3}\right)^2 + \left(y-\frac{4}{3}\right)^2 = \frac{50}{9}$$

- Scrivere l'equazione della circonferenza passante per i punti (0; 0), (1; 2) e (-2; 1). $x^2 + y^2 + x 3y = 0$
- 16. Dopo aver determinato i punti A e B d'intersezione tra la circonferenza avente per centro l'origine e raggio uguale a 2 con la bisettrice del 1° e 3° quadrante, detto C uno dei due punti d'intersezione con l'asse y, determinare l'area del triangolo ABC.

$$A(-\sqrt{2}; -\sqrt{2}); B(\sqrt{2}; \sqrt{2}); \text{ area} = 2\sqrt{2}$$

Stabilire se la retta r è secante, tangente o esterna rispetto alla circonferenza γ .

18. **a.**
$$\gamma$$
: $x^2 + y^2 - 6x + 4y + 4 = 0$ r : $y = 0$ secante

b. γ : $x^2 + y^2 - 6x + 4y + 4 = 0$ r : $2x + 3y - 6 = 0$ secante

Determinare le equazioni delle rette passanti per il punto P e tangenti alla circonferenza γ .

19.
$$P(1; 3)$$
 $\gamma: x^2 + y^2 - 2x - 2y + 1 = 0$ $y - 3 = \pm \sqrt{3}(x - 1)$

20.
$$P(3; -3)$$
 $\gamma: x^2 + y^2 - 4x + 4y + 7 = 0$ $x = 3; y = -3$

21.
$$P(0; 0)$$
 $\gamma: x^2 + y^2 - 2x - 4y = 0$ $x + 2y = 0$

- 22. Scrivere l'equazione della circonferenza tangente nell'origine alla retta 3x y = 0 e passante per $P(0; -\frac{53}{13})$. $x^2 + y^2 \frac{53}{13}(3x y) = 0$
- Scrivere l'equazione della circonferenza avente per tangente nell'origine la bisettrice del 2° e 4° quadrante e tangente alla retta x = 2y 5. $x^2 + y^2 + \frac{10}{9}(1 \pm \sqrt{10})(x + y) = 0$
- 24. Data la circonferenza di equazione:

$$x^2 + y^2 - 8x - 4y + 10 = 0$$

sia D il suo centro. Le tangenti condotte dall'origine O toccano la circonferenza in A e B. Trovare l'equazione della circonferenza passante per O, A, B dopo aver verificato che ha per diametro OD. $x^2 + y^2 - 4x - 2y = 0$

Parabola

Determinare le equazioni delle parabole aventi il fuoco e la direttrice indicati.

25.
$$F(1; 2)$$
 $d: y = 3$ $y = -\frac{1}{2}x^2 + x + 2$

26.
$$F(0; \frac{5}{4})$$
 $d: y = \frac{3}{4}$

27.
$$F(0; \frac{1}{4})$$
 $d: y = -\frac{1}{4}$

Dopo aver determinato le coordinate del fuoco F, del vertice V, le equazioni della direttrice e dell'asse di simmetria, disegnare le seguenti parabole.

28.
$$y = \frac{1}{2}x^2$$
 $F\left(0; \frac{1}{2}; V(0; 0); y = -\frac{1}{2}; x = 0\right)$

29.
$$y = \frac{1}{4}x^2 - 1$$
 $F(0; 0); V(0; -1); y = -2; x = 0$

30.
$$y = 2x^2 - 4x$$
 $F\left(1; -\frac{15}{8}\right); V(1; -2); y = -\frac{17}{8}; x = 1$

31. Determinare l'equazione della parabola con vertice (2; -1) e direttrice y = 3.

$$(x-2)^2 = -16(y+1)$$

32. Determinare l'equazione della parabola del tipo $y = ax^2 + bx + c$ avente vertice in (1; -1) e passante per (2; 3).

$$(x-1)^2 = \frac{1}{4}(y+1)$$

33. Determinare l'equazione della parabola avente per asse di simmetria la retta x = 1 e passante per i punti (0; 1) e (-1; 4).

$$y = x^2 - 2x + 1$$

34. Determinare l'equazione della parabola del tipo $y = ax^2 + bx + c$ avente vertice in V(0; 4) e passante per il punto (1; 8).

$$y = 4x^2 + 4$$

Determinare l'equazione della parabola del tipo $y = ax^2 + bx + c$ passante per i punti $(0; 3), (1; 8) \in (-2; -1)$.

$$y = x^2 + 4x + 3$$

Determinare le equazioni delle rette passanti per P e tangenti alla parabola y.

36.
$$P(0; 2)$$
 $\gamma: y = -x^2 + 5x - 4$ $y = (5 \pm 2\sqrt{6})x + 2$

37.
$$P(1; 0)$$
 $\gamma: y = -x^2 + 5x - 4$ $y = 3x - 3$

$$y = \left(-5 \pm 2\sqrt{6}\right)x$$

- Determinare la misura della corda staccata dalla parabola $y=-x^2+5x-6$ sulla retta x+y+1=0. [4 $\sqrt{2}$]
- Determinare per quale valore di q la retta y = -x + q è tangente alla parabola $y = x^2 3x + 1$ e calcolare le coordinate del punto di contatto. [0; (1; -1)]
- **40.** Scrivere l'equazione della retta tangente alla parabola $x = -y^2 + 3y$ nel suo punto di ordinata 2. [x + y 4 = 0]
- Trovare le intersezioni della parabola $y = -x^2 + 4x 3$ con la retta $y = \frac{7}{16}$ e trovare la misura della corda intercettata dalla parabola. $\left[\left(\frac{5}{4}; \frac{7}{16} \right); \left(\frac{11}{4}; \frac{7}{16} \right); \frac{3}{2} \right]$
- 42. Si determinino le equazioni delle tangenti alla parabola di equazione $y = \frac{1}{8}x^2 \frac{1}{2}x \frac{1}{2}$ uscenti dal punto $P\left(\frac{1}{3}; -3\right)$ e le coordinate dei punti di contatto. Determinare inoltre la retta passante per i punti di contatto e verificare che essa passa per il fuoco della parabola.

$$\[y = -\frac{3}{2}x - \frac{5}{2}; \ y = \frac{2}{3}x - \frac{29}{9}; \ \left(-4; \frac{7}{2} \right); \ \left(\frac{14}{3}; -\frac{1}{9} \right); \ 5x + 12y - 22 = 0 \]$$

GONIOMETRIA

Valori delle funzioni goniometriche, archi associati, formule goniometriche

Calcolare il valore delle seguenti espressioni.

1.
$$\operatorname{sen} \frac{\pi}{2} + 2 \operatorname{sen} \pi - 3 \operatorname{sen} \frac{3}{2} \pi - 2 \operatorname{sen} 0$$

2.
$$4 \sin 2\pi - \frac{3}{2} \sin \frac{\pi}{2} + \frac{5}{2} \sin \frac{5}{2}\pi - \frac{1}{2} \sin \pi$$

3.
$$5 \sin \frac{\pi}{2} - 4 \sin \frac{7}{2}\pi - 5 \sin 2\pi + \frac{1}{2} \sin 0$$

4.
$$2 \sin \frac{\pi}{4} - \sqrt{2} \sin \frac{3}{2} \pi - 4 \sin \frac{\pi}{3}$$
 $2(\sqrt{2} - \sqrt{3})$

5.
$$\sin 7\pi + \sqrt{2} \sin \frac{\pi}{4} - \sin \frac{3}{2}\pi + 4 \sin \frac{\pi}{6} - 5 \sin 3\pi$$

6.
$$\sin^2 6\pi + \sin^2 \frac{5}{2}\pi - \sin^2 \frac{\pi}{4} - \sin^2 5\pi$$

7.
$$3\cos 0^{\circ} - 4\cos 90^{\circ} - 5\sin 90^{\circ} + 4\cos 60^{\circ}$$

8.
$$\operatorname{sen} \frac{\pi}{4} - \cos \frac{\pi}{4} + \operatorname{sen} \frac{\pi}{3} - \cos \frac{\pi}{6}$$

9.
$$8 \cos \frac{\pi}{3} + 4 \sin \frac{\pi}{6} - \sqrt{2} \sin \frac{\pi}{4} + \sqrt{2} \cos \frac{\pi}{4}$$

10.
$$\sin 90^{\circ} - \cos 30^{\circ} + 2 \sin 60^{\circ} + \sin 180^{\circ}$$
 $1 + \frac{\sqrt{3}}{2}$

11.
$$\frac{3 \sin \frac{3}{2} \pi \left(\frac{4}{3} \sin \frac{\pi}{2} - 4 \sin \pi\right)}{5 \cos \frac{3}{2} \pi + 7 \cos \pi (1 - \cos \pi)}$$

12.
$$\frac{\tan + \cot \frac{3}{2}\pi - 3 \sin \left(-\frac{5}{2}\pi\right)}{\sin^2 \left(-\frac{\pi}{2}\right) + \cos^2 \left(-\pi\right)}$$

13.
$$\frac{\operatorname{tg} 4\pi + \operatorname{ctg} \left(-\frac{7}{2}\pi\right) + 4}{\left[\operatorname{sen} \pi - 2 \cos\left(-\pi\right)\right]^{2}}$$

14.
$$\frac{\sqrt{2} \sin \frac{\pi}{4} + \sqrt{3} \cos \frac{\pi}{6} - tg \frac{\pi}{3} \cot \frac{\pi}{3}}{\cot \frac{\pi}{6} + tg \frac{\pi}{6}}$$

15.
$$\frac{2 \operatorname{tg} 45^{\circ} - \operatorname{tg} 360^{\circ} + \operatorname{ctg} 90^{\circ}}{2 \cos 30^{\circ} - \sin 90^{\circ}}$$

Determinare i valori delle rimanenti funzioni goniometriche dell'arco α sapendo che:

16.
$$\sin \alpha = \frac{1}{3}$$
 $0 < \alpha < \frac{\pi}{2}$ $\cos \alpha = \frac{2\sqrt{2}}{3}$; $tg\alpha = \frac{1}{2\sqrt{2}}$; $ctg\alpha = 2\sqrt{2}$

17. $\cos \alpha^{\circ} = -\frac{3}{5}$ $90^{\circ} < \alpha^{\circ} < 180^{\circ}$ $\sin \alpha^{\circ} = \frac{4}{5}$; $tg\alpha^{\circ} = -\frac{4}{3}$; $ctg\alpha^{\circ} = -\frac{3}{4}$

18. $\sin \alpha = \frac{1}{4}$ $\frac{\pi}{2} < \alpha < \pi$ $\cos \alpha = -\frac{\sqrt{15}}{4}$; $tg\alpha = -\frac{1}{\sqrt{15}}$; $ctg\alpha = -\sqrt{15}$

19. $tg\alpha = \frac{24}{7}$ $-2\pi < \alpha < -\frac{3}{2}\pi$ $ctg\alpha = \frac{7}{24}$; $sen\alpha = \frac{24}{25}$; $cos\alpha = \frac{7}{25}$

20. $ctg\alpha = \frac{7}{24}$ $-\pi < \alpha < -\frac{\pi}{2}$ $tg\alpha = \frac{24}{7}$; $sen\alpha = -\frac{24}{25}$; $cos\alpha = -\frac{7}{25}$

Calcolare il valore delle seguenti espressioni.

21.
$$\sin \frac{5}{6}\pi + \cos \left(-\frac{2}{3}\pi\right) + tg\left(-\frac{\pi}{4}\right) + tg\left(-\frac{7}{6}\pi\right) + tg\left(-3\pi\right)$$

22. $\sin \frac{\pi}{4} + \cos \frac{3}{4}\pi + tg\left(-\frac{5}{4}\pi\right) + ctg\left(-\frac{3}{2}\pi\right)$

23. $tg\frac{4}{3}\pi + ctg\left(-\frac{\pi}{3}\right) + tg\left(-\pi\right) + sen\frac{4}{3}\pi$

24. $tg30^\circ + ctg60^\circ - sen120^\circ + cos(-30^\circ)$

25. $\frac{sen\frac{5}{6}\pi - \sqrt{3}\cos\frac{5}{6}\pi + \sqrt{3}\cos\left(-\frac{7}{6}\pi\right)}{tg^2\frac{7}{6}\pi}$

26.
$$\frac{2 \operatorname{tg} 225^{\circ} + 4 \operatorname{ctg} (-45^{\circ})}{2 \operatorname{sen} 210^{\circ} - 1}$$

27.
$$\sin \frac{7}{2}\pi - 3\cos \frac{5}{6}\pi + \tan \frac{\pi}{6} - 6\frac{\cot \frac{\pi}{3}}{\sin \frac{2}{3}\pi}$$
 $\frac{-30 + 11\sqrt{3}}{6}$

28.
$$\frac{\operatorname{tg} \frac{7}{4} \pi - \cos \frac{7}{4} \pi}{\operatorname{tg} \frac{\pi}{3} + \operatorname{ctg} \frac{\pi}{3}} \cdot \frac{\operatorname{ctg} \frac{\pi}{6} + \operatorname{tg} \frac{7}{6} \pi}{\operatorname{sen} \left(-\frac{\pi}{2}\right) - \operatorname{sen} \frac{\pi}{4}}$$

29.
$$\frac{\operatorname{tg}^{2} \frac{5}{3} \pi + \operatorname{ctg}^{2} \left(-\frac{\pi}{6}\right)}{\operatorname{sen}^{2} \left(-\frac{2}{3} \pi\right) + \cos^{2} \frac{4}{3} \pi}$$

1

30.
$$\frac{\operatorname{tg}\left(-\frac{\pi}{3}\right) + \operatorname{ctg}\left(-\frac{7}{6}\pi\right)}{\operatorname{sen}\frac{\pi}{3} - \operatorname{cos}\left(-\frac{5}{6}\pi\right)}$$

31.
$$\frac{\operatorname{tg}(-135^{\circ}) + \operatorname{tg}(-300^{\circ})}{\operatorname{ctg}(-30^{\circ}) + 1}$$

Sfruttando le relazioni tra gli archi associati, semplificare le seguenti espressioni, esprimendo il risultato per mezzo delle funzioni goniometriche dell'arco di misura α .

32.
$$2 \operatorname{sen} (\pi - \alpha) + \cos (\pi - \alpha) - \operatorname{sen} \alpha + 3 \cos \alpha$$
 $\operatorname{sen} \alpha + 2 \cos \alpha$

33.
$$2 \operatorname{sen} (180^{\circ} - \alpha^{\circ}) - \cos^2 (180^{\circ} - \alpha^{\circ}) + 2$$
 $(\operatorname{sen} \alpha^{\circ} + 1)^2$

34.
$$[1+tg (\pi-\alpha)](1+tg \alpha) + \frac{sen (\pi-\alpha) cos (\pi-\alpha)}{ctg \alpha} cos^2 \alpha - tg^2 \alpha$$

35.
$$\frac{\operatorname{ctg}(180^{\circ} - \alpha^{\circ}) - \operatorname{tg}(180^{\circ} - \alpha^{\circ})}{\operatorname{tg}\alpha^{\circ} - \operatorname{ctg}\alpha^{\circ}}$$

36.
$$tg(\pi - \alpha) ctg \alpha - ctg(\pi - \alpha) tg \alpha$$

37.
$$\frac{1}{1+\cos(\pi+\alpha)} + \frac{\cos(\pi+\alpha)}{1-\cos^2(\pi+\alpha)}$$

$$\frac{1}{\sin^2\alpha}$$

38.
$$\frac{\operatorname{tg}(\pi+\alpha)+\operatorname{tg}\alpha}{\operatorname{sen}(\pi+\alpha)}-\frac{1}{\cos(\pi+\alpha)}$$

$$\frac{1}{\cos\alpha}$$

39.
$$\frac{\operatorname{sen}(\pi+\alpha)}{\operatorname{sen}(\pi+\alpha)-\cos(\pi-a)} - \frac{\cos(\pi+\alpha)}{\operatorname{sen}(\pi-\alpha)+\cos(\pi+\alpha)} = \frac{\operatorname{sen}\alpha+\cos\alpha}{\operatorname{sen}\alpha-\cos\alpha}$$

Sviluppare mediante le formule di addizione e sottrazione ed eventualmente semplificare le seguenti espressioni.

40.
$$\operatorname{sen}\left(\frac{\pi}{4} + \alpha\right) - \cos\left(\alpha - \frac{\pi}{4}\right)$$

41.
$$\operatorname{sen}\left(\frac{\pi}{3} - \alpha\right) + \cos\left(\frac{2}{3}\pi - \alpha\right)$$
 $\frac{\sqrt{3} - 1}{2}(\operatorname{sen}\alpha + \cos\alpha)$

42.
$$\operatorname{sen}\left(\alpha + \frac{\pi}{4}\right) - \cos\left(\alpha + \frac{\pi}{4}\right)$$

43.
$$\cos\left(\alpha + \frac{\pi}{4}\right)\cos\left(\alpha - \frac{\pi}{4}\right)$$
 $\frac{\cos^2\alpha - \sin^2\alpha}{2}$

44.
$$\cos\left(\frac{\pi}{3} - \alpha\right) - \sin\left(\frac{2}{3}\pi + \alpha\right) + 2\cos\left(\alpha + \frac{\pi}{3}\right) - \cos\left(\frac{5}{6}\pi + \alpha\right) = \frac{3\cos\alpha - (\sqrt{3} - 2)\sin\alpha}{2}$$

45.
$$\sqrt{2}\cos\left(\alpha-\frac{\pi}{4}\right)+\sqrt{3}\sin\left(\frac{\pi}{3}-\alpha\right)+\frac{\sqrt{3}}{2}\sin\alpha$$
 $\frac{5}{2}\cos\alpha+\sin\alpha$

46.
$$2 \operatorname{sen}^2 \left(\frac{\pi}{4} - \alpha \right) - 2 \operatorname{sen} \left(\alpha - \frac{3}{4} \pi \right) \cos \left(\frac{5}{4} \pi - \alpha \right)$$
 -4 sen $\alpha \cos \alpha$

47.
$$\cos^2\left(\frac{\pi}{6}-\alpha\right)-\sin^2\alpha-\sqrt{3}\cos\alpha\cos\left(\alpha-\frac{\pi}{6}\right)$$

48. In un triangolo due angoli hanno ampiezze α e β . Sapendo che:

$$\beta = \frac{\pi}{4} \qquad e \qquad \cos \alpha = -\frac{1}{5}$$

determinare le funzioni goniometriche del terzo angolo y.

$$\sin \gamma = \frac{4\sqrt{3} - \sqrt{2}}{10}; \cos \gamma = \frac{4\sqrt{3} + \sqrt{2}}{10}$$

Equazioni goniometriche

1.
$$\sin x = \frac{\sqrt{2}}{2}$$
 $\tan x = \frac{\pi}{4} + 2k\pi; x = \frac{3}{4}\pi + 2k\pi$ $\tan x = \frac{\pi}{6} + k\pi$

2.
$$\cos x = -\frac{1}{2}$$
 $\sin 3x = \frac{1}{2}$ $x = \pm \frac{2}{3}\pi + 2k\pi$ $x = \frac{\pi}{18} + \frac{2}{3}k\pi$; $x = \frac{5}{18}\pi + \frac{2}{3}k\pi$

3.
$$2 \sin 2x - \sqrt{3} = 0$$
 $x = \frac{\pi}{6} + k\pi; \ x = \frac{\pi}{3} + k\pi$

4.
$$\sin\left(2x - \frac{\pi}{3}\right) = -1$$
 $x = \frac{11}{12}\pi + k\pi$

5.
$$\operatorname{sen}\left(x - \frac{\pi}{3}\right) = \operatorname{sen} 2x$$
 $x = -\frac{\pi}{3} + 2k\pi; x = \frac{4}{9}\pi + \frac{2}{3}k\pi$

6.
$$\operatorname{sen}\left(3x + \frac{\pi}{12}\right) = \operatorname{sen} x$$
 $x = -\frac{\pi}{24} + k\pi; x = \frac{11}{48}\pi + k\frac{\pi}{2}$

7.
$$\cos\left(x - \frac{3}{4}\pi\right) = -\frac{\sqrt{3}}{2}$$
 $x = \frac{19}{12}\pi + 2k\pi$; $x = -\frac{\pi}{12} + 2k\pi$

8.
$$\cos\left(2x + \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$
 $x = k\pi; x = -\frac{\pi}{4} + k\pi$

9.
$$\cos\left(2x - \frac{\pi}{12}\right) = \cos\left(x + \frac{\pi}{3}\right)$$
 $x = \frac{5}{12}\pi + 2k\pi; x = -\frac{\pi}{12} + \frac{2}{3}k\pi$

10.
$$tg\left(x-\frac{\pi}{4}\right)=tg\,2x$$
 nessuna soluzione

11.
$$tg\left(x-\frac{\pi}{6}\right) = tg\left(\frac{4}{3}\pi - x\right)$$
 $x = \frac{3}{4}\pi + k\frac{\pi}{2}$

Equazioni riconducibili a elementari

Risolvere le seguenti equazioni.

12.
$$\sin^2 x - \sin x = 0$$
 $x = k\pi; x = \frac{\pi}{2} + 2k\pi$

13.
$$2 \operatorname{sen}^2 x - 1 = 0$$
 $x = \frac{\pi}{4} + k \frac{\pi}{2}$

14.
$$tg^2x - tg x = 0$$
 $x = k\pi; x = \frac{\pi}{4} + k\pi$

15.
$$tgx + ctgx = \frac{4}{\sqrt{3}}$$
 $x = \frac{\pi}{6} + k\pi; \ x = \frac{\pi}{3} + k\pi$

16.
$$2\sin^2\left(x + \frac{\pi}{6}\right) - \sin\left(x + \frac{\pi}{6}\right) = 0$$
 $2k\pi; -\frac{\pi}{6} + 2k\pi; \frac{2}{3}\pi + 2k\pi$

17.
$$4\cos^2\left(2x-\frac{\pi}{3}\right)-1=0$$
 $k\pi; \frac{\pi}{3}+k\pi; \frac{\pi}{2}+k\pi; -\frac{\pi}{6}+k\pi$

18.
$$\sin^2 x + \sin x - \cos^2 x = 0$$
 $x = \frac{\pi}{6} + k2\pi; \ x = \frac{5}{6}\pi + k2\pi; \ x = \frac{3}{2}\pi + k2\pi$

19.
$$tg^2x - 2tgx + 1 = 0$$

$$x = \frac{\pi}{4} + k\pi$$

20.
$$2\cos^2 x - (2 + \sqrt{3})\cos x + \sqrt{3} = 0$$

$$x=2k\pi; x=\pm\frac{\pi}{6}+2k\pi$$

21.
$$2\cos^2\left(4x + \frac{\pi}{6}\right) - 5\cos\left(4x + \frac{\pi}{6}\right) - 3 = 0$$

$$x = \frac{\pi}{8} + k\frac{\pi}{2}$$
; $x = -\frac{5}{24}\pi + k\frac{\pi}{2}$

22.
$$tg^3x - tg^2x - 3tgx + 3 = 0$$

$$x = \frac{\pi}{4} + k\pi; x = \pm \frac{\pi}{3} + k\pi$$

23.
$$tg^4x - 4tg^2x + 3 = 0$$

$$x = \frac{\pi}{4} + k\frac{\pi}{2}$$
; $x = \pm \frac{\pi}{3} + k\pi$

24.
$$\frac{\cos x}{1 + \sin x} + tgx = 2$$

$$x = \pm \frac{\pi}{3} + k2\pi$$

Equazioni lineari in seno e coseno

Risolvere le seguenti equazioni.

$$25. \quad \sin x + \cos x = 0$$

$$x = \frac{3}{4}\pi + k\pi$$

$$26. \quad \sin x - \sqrt{3}\cos x = 0$$

$$x = \frac{\pi}{3} + k\pi$$

27.
$$\sin x - \cos x + 1 = 0$$

$$x = 2kx; \ x = -\frac{\pi}{2} + 2k\pi$$

28.
$$\sqrt{3} \operatorname{sen} x + \cos x - 2 = 0$$

$$x = \frac{\pi}{3} + 2k\pi$$

29.
$$\cos x + \sin x + 2 = 0$$

$$30. \qquad \frac{\text{sen}x}{1 + \cos x} = \sqrt{3}$$

$$x = \frac{2}{3}\pi + 2k\pi$$

Equazioni omogenee o riducibili a omogenee

Risolvere le seguenti equazioni.

31.
$$\sin^2 x - 3 \cos^2 x = 0$$

$$x = \pm \frac{\pi}{3} + k\pi$$

32.
$$\sin^2 x + (\sqrt{3} - 1) \sin x \cos x - \sqrt{3} \cos^2 x = 0$$

$$x = -\frac{\pi}{3} + k\pi; \quad x = \frac{\pi}{4} + k\pi$$

$$33. \quad 2 \sin x \cos x + \sin^2 x = 0$$

$$x = k\pi$$
; $x = \arctan(-2)$

34.
$$2\sqrt{2} \sin x \cos x + 1 = 0$$

$$x = \frac{5}{8}\pi + k\pi; \quad x = -\frac{\pi}{8} + k\pi$$

Disequazioni goniometriche

Disequazioni elementari o riconducibili a elementari

Risolvere le seguenti disequazioni.

$$35. \quad \cos x > \frac{\sqrt{2}}{2}$$

36.
$$\lg x > -\sqrt{3}$$
 $-\frac{\pi}{3} + k\pi < x < \frac{\pi}{2} + k\pi$

 $-\frac{\pi}{4} + 2k\pi < x < \frac{\pi}{4} + 2k\pi$

37.
$$2\cos\left(x-\frac{\pi}{3}\right)-1<0$$
 $\frac{2}{3}\pi+2k\pi < x < 2\pi+2k\pi$

38.
$$tg 2x - 1 < 0$$

$$-\frac{\pi}{4} + k \frac{\pi}{2} < x < \frac{\pi}{8} + k \frac{\pi}{2}$$

40.
$$\cot^2 x - \sqrt{3} \cot g x < 0$$
 $\frac{\pi}{6} + k\pi < x < \frac{\pi}{2} + k\pi$

41.
$$2 \sin^2 x - \sin x - 1 < 0$$

$$-\frac{\pi}{6} + 2k\pi < x < \frac{7}{6}\pi + 2k\pi; \ x \neq \frac{\pi}{2} + 2k\pi$$

42.
$$2\cos^2 x + \cos x - 1 > 0$$

$$-\frac{\pi}{3} + 2k\pi < x < \frac{\pi}{3} + 2k\pi$$

43.
$$2 \sin^2 x + 4 \cos^2 x > 5 \cos x$$

$$\frac{\pi}{3} + 2k\pi < x < \frac{5}{3}\pi + 2k\pi$$

Disequazioni omogenee o riducibili a omogenee

Risolvere le seguenti disequazioni.

$$47. \quad \operatorname{sen}^2 x - \cos^2 x > 0$$

$$\frac{\pi}{4} + k\pi < x < \frac{3}{4}\pi + k\pi$$

48.
$$\cos^2 x - 2\sqrt{3} \operatorname{sen} x \cos x - \operatorname{sen}^2 x > 0$$

$$-\frac{5}{12}\pi + k\pi < x < \frac{\pi}{12} + k\pi$$

49.
$$6 \sin^2 x - 2\sqrt{3} \sin x \cos x > 3$$

$$-\frac{2}{3}\pi + k\pi < x < -\frac{\pi}{6} + k\pi$$

Esercizi di ricapitolazione

Risolvere le seguenti disequazioni.

50.
$$\operatorname{tg} x \left(2 \operatorname{sen} x - \sqrt{3} \right) > 0$$

$$\frac{\pi}{3} + 2k\pi < x < \frac{\pi}{2} + 2k\pi;$$

$$\frac{2}{3}\pi + 2k\pi < x < \pi + 2k\pi; \ \frac{3}{2}\pi + 2k\pi < x < 2\pi + 2k\pi$$

51.
$$\sqrt{2} \operatorname{sen} x \cos x - \operatorname{sen} x \le 0$$

$$\frac{\pi}{4} + 2k\pi \le x \le \pi + 2k\pi; -\frac{\pi}{4} + 2k\pi \le x \le 2k\pi$$

52.
$$(2 \sin^2 x - \sqrt{2} \sin x)(1 - 3 \tan^2 x) \ge 0$$

$$\frac{\pi}{6} + 2k\pi \le x \le \frac{\pi}{4} + 2k\pi; \quad \frac{3}{4}\pi + 2k\pi \le x \le \frac{5}{6}\pi + 2k\pi;$$
$$\pi + 2k\pi \le x \le \frac{7}{6}\pi + 2k\pi; \quad \frac{11}{6}\pi + 2k\pi \le x \le 2\pi + 2k\pi$$

$$53. \qquad \frac{2\mathrm{sen}^2 x + 1}{\cos 2x} < 0$$

$$\frac{\pi}{4} + k\pi < x < \frac{3}{4}\pi + k\pi$$

$$54. \qquad \frac{\operatorname{sen} x}{\operatorname{sen} x + 1} > 1$$

55.
$$1 - \frac{1}{\lg x} > 0$$

$$\frac{\pi}{4} + k\pi < x < \frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi < x < \pi + k\pi$$

TRIGONOMETRIA

Triangoli rettangoli

- 53. Determinare la misura del perimetro e l'area di un triangolo rettangolo sapendo che un cateto misura 24 cm e il seno dell'angolo ad esso opposto è $\frac{12}{13}$ [60 cm e 120 cm²]
- 54. Il triangolo isoscele ABC ha la base AB di 70 cm e il seno dell'angolo alla base pari a $\frac{12}{13}$; determinare il perimetro del triangolo e la lunghezza dell'altezza CH relativa alla base. [252 cm e 84 cm]
- 55. Determinare il perimetro di un triangolo isoscele ABC di cui si conosce l'altezza AH, di 21 cm, relativa alla base BC e il cui angolo al vertice è di 120° . $[42(2+\sqrt{3}) \text{ cm}]$

56. Nel triangolo ABC, rettangolo in A, il cateto AB è di 24 cm e il seno dell'angolo ad esso opposto è $\frac{4}{5}$; determinare il perimetro del triangolo. [72 cm]

Triangoli generici

Risolvere i seguenti triangoli essendo a, b, c le misure di lati e α , β , γ gli angoli ad essi opposti.

57.
$$a = 2$$
, $b = 2\sqrt{3}$, $\beta = 120^{\circ}$ [$\alpha = 60^{\circ}$, $\beta = 30^{\circ}$, $\gamma = 90^{\circ}$]

58.
$$a = 6\sqrt{3}$$
, $\alpha = 60^{\circ}$, $\beta = 45^{\circ}$ [$b = 6\sqrt{2}$, $c = 3\sqrt{2}(\sqrt{3} + 1)$, $\gamma = 75^{\circ}$]

59.
$$a = 4\sqrt{2}$$
, $b = 4$, $\gamma = 30^{\circ}$ [$c = 4$, $\beta = 30^{\circ}$, $\alpha = 120^{\circ}$]

60.
$$a = \sqrt{3}$$
, $b = 1$, $c = 2$ [$c = 2$, $\alpha = 30^{\circ}$, $\gamma = 30^{\circ}$]

ESPONENZIALI E LOGARITMI

Equazioni esponenziali e logaritmiche

1.
$$3^{x^2+x} = 1$$
; $2^{2-8x} = 4^{3x+1}$; $2^{x^3} = 256$. [0 e - 1; 0; 2]

2.
$$\sqrt{2\sqrt{2}} = 4^{1-x}; \quad \frac{1}{4\sqrt{2}} = \sqrt{8^x}; \quad \left(\frac{1}{n}\right)^{2x+1} = 1.$$
 $\left[\frac{5}{8}; -\frac{5}{3}; -\frac{1}{2}\right]$

3.
$$\sqrt{2} \cdot \left(\frac{1}{2}\right)^{x+1} = 1; \quad \sqrt[3]{5^x} = 25; \quad 4^{4x} = 2^{\frac{2}{x}}.$$

$$\left[-\frac{1}{2}; \ 6; \pm \frac{1}{2}\right]$$

4.
$$\frac{3^{1-x} \cdot 9^{2+x}}{27^x} = \frac{1}{3};$$
 $\left(\frac{2}{3}\right)^{x+1} = \left(\frac{27}{8}\right)^{1-2x};$ $\sqrt{2\sqrt{4^x}} = 4.$ $\left[3; \frac{4}{5}; 3\right]$

5.
$$\sqrt[1+x]{2^{3x}} = \sqrt[x]{2^{x+2}} \cdot \sqrt[2x]{2^{x-2}}; \quad \frac{(3^{x+1})^{2x-1} \cdot 27^{1-x}}{9^{2-x}} = 1.$$
 [2; ±1]

6.
$$3^{x+2} + 3^{x+1} + 3^x = 351$$
. (Si noti che $3^{x+2} = 3^x \cdot 3^2$...); $4^{x-1} + 4^x + 4^{x+1} = \frac{21}{8}$. $\left[3; -\frac{1}{2}\right]$

7.
$$3^{2x} - 3^x - 6 = 0$$
. (Porre $3^x = y$...). [1]

8.
$$4^x - 6 \cdot 2^x + 8 = 0$$
. (Si noti che $4^x = (2^2)^x = (2^x)^2$...); $9^x + 6 \cdot 3^x - 27 = 0$. [1 e 2; 1]

9.
$$12\left(\frac{4}{9}\right)^x - 35\left(\frac{2}{3}\right)^x + 18 = 0; \quad 16\left(\frac{1}{4}\right)^x - 10\left(\frac{1}{2}\right)^x + 1 = 0.$$
 [-2 e 1; 1 e 3]

10.
$$\frac{3^{2-x}-3^{1-x}}{9^{x+1}-3^{2x+1}} = 27^{1+3x}$$
. (Porre $3^x = y \dots$). $\left[-\frac{1}{4}\right]$

13.
$$\frac{3^{x-1}}{25}\sqrt{3} = \sqrt{125^x \cdot \sqrt[3]{3^{x-1}}}.$$

14.
$$4^{1-x} \cdot \frac{1}{3^{2x}} = \sqrt{4^{1+3x}} \cdot \frac{1}{6^{2+x}}$$
.

15.
$$\frac{2^x \cdot 15}{1+2^3} = 40 \cdot 3^{x-4}.$$

16.
$$\sqrt[x]{9^{x+1}} : \sqrt[x]{3^{1-x}} = \sqrt{5}$$
.

17.
$$\frac{32-3^x}{5+3^{-x}} = \frac{9}{2}$$
; $9^x - 3^{x+1} + 2 = 0$.

18.
$$1+9^{x-1}=\frac{8}{3}+3^{x-1}-3^{x-2}$$
.

19.
$$3^x + 5 \cdot 3^{x+1} = 2^{2x-1}$$
.

20.
$$3^x + \frac{6}{3^x} = \frac{29}{3}$$
; $4^{x-2} = 5$.

21.
$$\frac{5^x - 4}{5^x - 1} + \frac{4}{25^x - 5^x} = 0; \quad 3^x \cdot 4 = 5 \cdot 7^{x+1}.$$

22.
$$\frac{2}{1-3^x} + \frac{6}{9^x-1} + \frac{2}{3^x+1} = \frac{1}{1+3^{-x}}$$
.

23.
$$\frac{1-2^{x+1}}{2^x} + \frac{3+6\cdot 2^x}{2^x+2} = \frac{11}{4^x+2^{x+1}}.$$

24.
$$4^{x} - 2^{x+3} + 15 = 0$$
; $14^{x-1} = 7^{x+1}$.

$$\left[\frac{2 \log 3 + 12 \log 5}{5 \log 3 - 9 \log 5}\right]$$

$$\frac{Log 72}{Log 48}$$

[3]

$$\left[\frac{Log 9}{Log 5 - 6 Log 3} \text{ non è accettabile perché ...}\right]$$

$$\left[2 e - \frac{Log 2}{Log 3}; 0 e \frac{Log 2}{Log 3}\right]$$

$$[log_35]$$

$$\left[\frac{5 \operatorname{Log} 2}{2 \operatorname{Log} 2 - \operatorname{Log} 3}\right]$$

$$\left[2 \operatorname{e} \frac{\operatorname{Log} 2 - \operatorname{Log} 3}{\operatorname{Log} 3}; 2 + \log_4 5\right]$$

$$\left[\log_5 2; \frac{\log 35 - \log 4}{\log 3 - \log 7}\right]$$

$$[log_32]$$

$$\left[\frac{Log\ 3 - Log\ 2}{Log\ 2}\right]$$

$$\left[\log_2 3 \text{ e } \log_2 5; \frac{\log 98}{\log 2}\right]$$