

ISTITUTO DI ISTRUZIONE SECONDARIA "DANIELE CRESPI"

Liceo Internazionale Classico e Linguistico VAPC02701R Liceo delle Scienze Umane VAPM027011

Via G. Carducci 4 – 21052 BUSTO ARSIZIO (VA)

www.liceocrespi.it-Tel. 0331 633256 - Fax 0331 674770 - E-mail: lccrespiatin.it

C.F. 81009350125 - Cod.Min. VAIS02700D

CertINT® 2010

Classe 1 CL – prof. Enrico Rigon

Compiti per le vacanze di MATEMATICA

- Rivedere gli argomenti teorici sul testo
- per chi ha riportato la votazione
 - o 6: tutti gli esercizi
 - o 7 o 8: metà degli esercizi per ogni argomento
 - o **9** o **10**: il 25% degli esercizi per ogni argomento
- Controllo del lavoro: prima ora di matematica a.s. 2011-12

Indicazioni per il recupero e per il consolidamento di MATEMATICA

- Per ogni argomento:
 - o rivedere la teoria sul testo
 - o eseguire nell'ordine gli esercizi sotto elencati
- Si raccomanda l'ordine nello svolgimento del lavoro
- Il lavoro estivo è finalizzato al ripasso e al consolidamento degli argomenti studiati nel corso dell'anno; pertanto deve essere svolto con continuità e gradualità, evitando di concentrare tutto in pochissimo tempo

Consegnare il lavoro sotto indicato, ordinato per argomento, nel giorno stabilito dal DS: lunedì 29 agosto

INSIEMI

Rappresenta per elencazione e mediante la loro proprietà caratteristica i seguenti insiemi:

- a. numeri interi compresi fra -2 e 5 o ad essi uguali
- b. lettere della parola insieme
- c. divisori di 30

Dati gli insiemi $A = \{x \in N \mid x < 11 \text{ e } x \text{ è pari}\}, B = \{x \in N \mid 7 < x < 13\}, C = \{x \in N \mid x \text{ è divisore di 12}\}$ calcola:

- **a.** (A ∪ B)
- **b.** $A \cap B$
- c. $(A \cap C) \cap B$
- **d.** $(B \cap C) \cup A$

[a. $\{0, 2, 4, 6, 8, 9, 10, 11, 12\}$; b. $\{8, 10\}$; c. \emptyset ; d. $\{0, 2, 4, 6, 8, 10, 12\}$]

Dati i seguenti insiemi $A = \{x \in N \mid x > 3\}, B = \{x \in N \mid x < 22\}, C = \{x \in N \mid x \text{ è multiplo di 5}\}, calcola:$

- **a.** $A \cup B$
- b. $A \cap B$
- c. $(A \cap B) \cap C$

[a. N; b. $\{x \in N \mid 3 < x < 22\}$; c. $\{5, 10, 15, 20\}$]

Dati gli insiemi $A = \{1, 3, 5, 7\}, B = \{1, 5, 10, 15\}, C = \{2, 4, 6, 8, 10\}$ calcola:

- a. $A \cap B \cap C$
- **b.** $(A \cap B) \cup C$
- c. $(B-A)\cap C$
- [a. \emptyset ; b. $\{1, 2, 4, 5, 6, 8, 10\}$; c. $\{10\}$]

Dato l'insieme $A = \{3, 5, 8, 11, 14\}$ e il suo sottoinsieme $B = \{x \in A \mid x \text{ è pari}\}$, trova il complementare di B rispetto ad A. $[\{3, 5, 11\}]$

Dato l'insieme $A = \{2, 6, 7, 10, 13\}$ e il suo sottoinsieme $B = \{x \in A \mid x \text{ è primo}\}$, trova il complementare di B rispetto ad A. [{6, 10}]

Dato l'insieme $A = \{3, 5, 6, 8, 9\}$ e il suo sottoinsieme $B = \{x \in A \mid x \text{ è multiplo di } 3\}$, trova il complementare di B rispetto ad A.

Dati i due insiemi $A = \{1, 2, 3\}$, $B = \{1, 2\}$ costruisci $A \times B$ e rappresenta i suoi elementi in tutti i modi che conosci. $[\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)\}]$

Dato l'insieme $A = \{x \in Z \mid x = 15 - 3n, n \in N\}$, stabilisci quali fra le seguenti relazioni sono vere:

- **a.** $-12 \in A$
- **b.** $\{6\} \in A$
- c. $\emptyset \subset A$

- **d.** $\{0,6\} \subset A$
- e. $A \subset \{\text{multipli di 3 positivi e negativi}\}$

[a., d., e.]

Stabilisci se sono vere o false le seguenti relazioni:

a. $\{1,0\} = \{0,1\}$

V F

b. $\{(2,3)\} = \{2\} \times \{3\}$

V F

c. $\{(2,3),(3,2)\} = \{2\} \times \{3\}$

VF

d. $\{1,7\} = (1,7)$

V F V F

e. 0 ∈ Ø

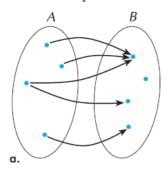
[V, V, F, F, F]

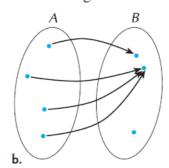
RELAZIONI E FUNZIONI

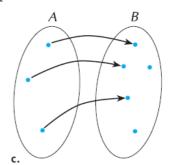
Dati $A = \{x \in N \mid 6 \le x \le 15\}$ e $B = \{y \in N \mid y \le 5\}$ rappresenta le coppie della relazione \mathcal{R} definita dall'enunciato aperto p(x,y): (x = 3y) con $x \in A$ e $y \in B$ mediante elencazione, rappresentazione cartesiana, rappresentazione sagittale. $[\{(6,2), (9,3), (12,4), (15,5)\}]$

Dati $A = \{x \in N \mid x \le 5\}$ e $B = \{2, 4, 5, 6, 10\}$ rappresenta con un diagramma cartesiano la relazione \mathcal{R} definita da p(x, y): $\langle y = 2x \rangle$ con $x \in A$ e $y \in B$. Quali sono il dominio e il codominio della relazione? $[D = \{1, 2, 3, 5\}; C = \{2, 4, 6, 10\}]$

Individua quali fra le seguenti relazioni fra gli insiemi A e B rappresentano delle funzioni:







 $[\mathbf{b}.,\mathbf{c}.]$

Considerato l'insieme A come dominio, determina il codominio della funzione f assegnata in ciascuno dei seguenti casi:

a.
$$A = \{3, 9, 15, 27\}$$
 $f(x) = \frac{1}{3}x + 1$ $[\{2, 4, 6, 10\}]$

b.
$$A = \{2, 3, 5, 7\}$$
 $f(x) = x^2 - 2$ $[\{2, 7, 23, 47\}]$ **c.** $A = \{0, 1, 5, 9\}$ $f(x) = 3x - 2$ $[\{-2, 1, 13, 25\}]$

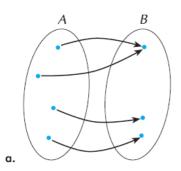
c.
$$A = \{0, 1, 5, 9\}$$
 $f(x) = 3x - 2$ $[\{-2, 1, 13, 25\}]$

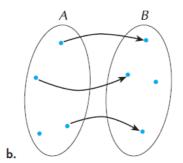
E' data la funzione $f(x) = x^2 + 1$ il cui codominio è $\{2, 5, 10\}$. Quali fra gli insiemi che seguono potrebbe essere il dominio della funzione?

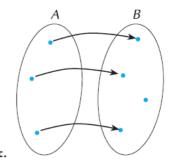
$$A = \{1, 2\} \qquad B = \{-3, -2, 1, 2, 3\} \qquad C = \{-3, -2, -1, 0, 1, 2, 3\} \qquad D = \{-3, -2, -1\}$$

$$[B, D]$$

Individua quali, fra le relazioni che seguono, rappresentano delle funzioni; stabilisci poi se si tratta di funzioni suriettive, iniettive, biiettive:







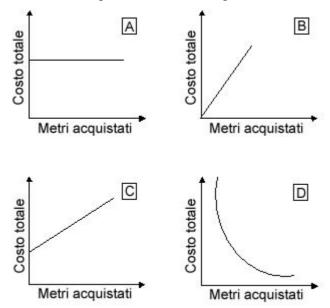
[a. funzione suriettiva; b. non è una funzione; c. funzione iniettiva]

PROPORZIONALITA'

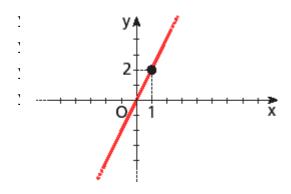
Quale tabella rappresenta grandezze direttamente proporzionali?

		В	
X	у	x	у
1	4	1	4
4	8	2	2
8	12	4	1
		-	
		D	
х	у	D x	у
x 2	y 5		y 1,5
		x	- 15

Un sarto deve acquistare una stoffa che costa 10 euro al metro. Quali di questi grafici rappresenta la relazione tra la quantità di metri acquistati e il costo totale?



Qual è l'equazione della retta rappresentata nel piano cartesiano?



INSIEMI N Z Q

Utilizzare ovunque è possibile le proprietà delle potenze

$$\left[2^{3}\cdot \left(2^{3}\right)^{2}\right]^{2}\cdot 2:\left\{ \left[\left(4^{2}\right)^{0}\right]^{5}\cdot 16^{4}\cdot 2^{2}\right\}$$

$$\left[(4^2)^3 \right]^3 \colon \left[(2^{12})^2 \cdot 4^4 \right] + \left[3^{12} \colon (3^6)^2 \right]^{12} \tag{17}$$

$$\left\{ \left[(4^2)^3 \colon 2 \right]^3 \colon \left[(2^{12})^2 \cdot 4^4 \right] + 1 \right\} \colon \left\{ \left[(3^3)^3 \right]^2 \colon 3^{17} \right\}$$

$$\left[\left(\frac{1}{6}\right)^4:6\right]^2:\left\{\left(\frac{1}{2}\right)^8\cdot\left[\left(\frac{1}{3}\right)^2\right]^4\right\}$$

$$\left[\frac{1}{36}\right]$$

$$\left\{ \frac{1}{3} + \left(-\frac{1}{3} \right)^5 \cdot \left[(3^4)^2 \colon (-3)^3 \right] \right\} \colon \left[(2^3)^2 \colon 2^4 \right]$$
 $\left[\frac{1}{3} \right]$

$$(5^2 - 2^4) \cdot 3^4 \cdot \left(\frac{1}{3} \cdot \frac{1}{3^2}\right)^2 + \left(\frac{3+3^2}{2} \cdot \frac{2^4}{6}\right)^2 : (2^2)^3$$
 [5]

$$\left\{ (7^3)^3 \colon \left[25 \cdot 5^{-1} + 8^5 : (2^{-2})^{-7} \right]^8 + 3 \right\}^2 - 2^{-4} \cdot (6^3)^2 \cdot \left(\frac{1}{3} \right)^4$$
 [64]

$$\left\{ \left(4^{12} \cdot \frac{1}{4}\right)^{-1} \cdot \left[\left(2^{3}\right)^{5} \right]^{2} \colon 2^{4} \right\} \cdot \left\{ \left(\frac{1}{2}\right)^{2} \cdot \left[\left(2^{3}\right)^{2} \colon 2^{6} + 8^{0} \right]^{-1} \right\}$$
 [2]

$$(0,25)^{2} + \left[\frac{4}{16^{3}} \cdot (-2)^{5} \cdot (0,2)^{4} \cdot \left(\frac{1}{10}\right)^{-4}\right]^{4} + 0,625 + \left(\frac{1}{4}\right)^{2} \cdot (-2)^{-3} \cdot \frac{8^{2}}{3} \cdot \frac{3}{2}$$

$$\left\{ \left[0,6^2 \cdot 3^{-1} : \left(\frac{1}{5} \right) + 0,2 \right]^3 : 0,25^{-3} + \frac{3}{125} \right\} \cdot \left[(5^2)^3 : 5^5 \right]^2$$
 $\left[\frac{4}{5} \right]$

PRODOTTI NOTEVOLI

$$(2a-b)^{3} - \left[(a-2b)(a^{2}+2ab+4b^{2}) + (2a-b)^{2}(a+b) \right] - 3 \left[b(b-2a)^{2} + (a+b)(a^{2}-ab+b^{2}) \right]$$

$$\left[(x-2y+\frac{1}{2})\left(x+2y+\frac{1}{2}\right) - \left(x-\frac{1}{2}\right)^{2} \right]^{2} - 3(x-2y^{2})^{2}$$

$$\left[(x^{2}+4y^{4}-4xy^{2}) + (x^{2}+4y^{4}-4xy^{2}) \right]$$

$$\left[(x^{2}+4y^{4}-4xy^{2} +$$

SCOMPOSIZIONI

Dopo aver scomposto i seguenti polinomi, determinare M.C.D. e m.c.m.:

$$a^3 - a;$$
 $a^5 - a^3$ [M.C.D. = a ; m.c.m. = $a^3(a + 1)(a + 1)$]
 $x;$ $x - 1;$ $x + 1$ [M.C.D. = 1; m.c.m. = $x(x - 1)(x + 1)$]
 $a + 2;$ $a + 6;$ $a + 3$ [M.C.D. = 1; m.c.m. = $(a + 2)(a + 3)(a + 6)$]
 $x^2 - 1;$ $x^3 - x^2;$ $x^3 - x$ [M.C.D. = $x - 1;$ m.c.m. = $x^2(x - 1)(x + 1)$]
 $a^2 + 2a;$ $2a + 4;$ $4a - 2a^2$ [M.C.D. = 1; m.c.m. = $2a(a + 2)(a - 2)$]
 $x^2 - 9;$ $x^2 - 6x + 9;$ $x^2 - 3x$ [M.C.D. = $x - 3;$ m.c.m. = $x(x + 3)(x - 3)^2$]

$$4a^2 - 1$$
; $12a + 6$; $2a^2 + a - 1$ [M.C.D. = 1; m.c.m. = $6(2a - 1)(2a + 1)(a + 1)$]
 $x^3 + 2x^2 + x$; $x^4 - x^2$; $x^4 - 1$ [M.C.D. = $x + 1$; m.c.m. = $x^2(x + 1)^2(x - 1)(x^2 + 1)$]

$$2ax - 4ay - 2bx + 4by$$
; $2ax + ay - 2bx - by$; $2x^2 - 3xy - 2y^2$
[M.C.D. = 1; m.c.m. = $2(a - b)(x - 2y)(2x + y)$]
 $a^2 + a - 2$; $a^2 + 2a - 3$; $a^2 - 6a + 5$
[M.C.D. = $a - 1$; m.c.m. = $(a + 2)(a - 1)(a + 3)(a - 5)$]

FRAZIONI ALGEBRICHE

Semplificare le seguenti frazioni algebriche:

$$\frac{ax^{2} + axy - x - y}{ax^{2} - x} \qquad \frac{a + b - bx - ax}{a(1 - x) - b(1 - x)} \qquad \left[\frac{x + y}{x}; \frac{a + b}{a - b}\right]$$

$$\frac{x^{2} + 4x + 4}{x^{2} - 4} \qquad \frac{ax^{5} + ax^{3} + 2ax^{2}}{a^{2}x^{3} + a^{2}x^{2}} \qquad \left[\frac{x + 2}{x - 2}; \frac{x^{2} - x + 2}{a}\right]$$

$$\frac{2x(x^{2}y - y^{2})}{4xy^{2} - xy^{3}} \qquad \frac{x^{4}y - xy^{2}}{ax^{3} - ay} \qquad \left[\frac{2y - 2x^{2}}{y^{2} - 4y}; \frac{xy}{a}\right]$$

$$\frac{2xyz}{2xy - 4x^{2}z^{2}} \qquad \frac{b^{2} - 2b^{2}x + b^{2}x^{2}}{abx^{2} - ab} \qquad \left[\frac{zy}{y - 2xz^{2}}; \frac{bx - b}{a + ax}\right]$$

$$\frac{4x^{2} - 8xy + 4y^{2}}{3x^{2}y - 3xy^{2}} \qquad \frac{x(3x + 1) + 3xy - 6x + y - 2}{6x^{2} + 5x + 1} \qquad \left[\frac{4(x - y)}{3xy}; \frac{x + y - 2}{2x + 1}\right]$$

Risolvere le seguenti espressioni:

$$\frac{3-a}{a^2-2a-3} \left(\frac{a^2-2a}{a-3} + \frac{3}{3-a} \right)$$
 [-1]

$$\frac{1-4x^2}{4x+18} \left(\frac{4}{2x+1} - \frac{5}{2x-1} \right)$$

$$\left(\frac{3a}{a^2 - 4a + 3} + \frac{4}{1 - a}\right) \left(\frac{a - 6}{12 - a} + \frac{1}{3}\right)$$

$$\left[\frac{2}{3(a - 1)}\right]$$

$$\left(\frac{1}{a-1} - \frac{1}{a^2-1}\right) \cdot \left(\frac{1+a}{1-a} - \frac{1-a}{a+1}\right) \cdot \left(a-2 + \frac{1}{a}\right) \qquad \left[-\frac{4a}{(a+1)^2}\right]$$

$$\frac{1}{y-4} \left(\frac{1}{y-4} + \frac{y}{4-y^2} \right) \left(-\frac{2-y}{4} + \frac{5-2y}{y+2} \right) \left(y+4 + \frac{4}{y} \right) \qquad \left[\frac{y-1}{y^2-2y} \right]$$

$$\left(\frac{ax^2y}{2(ax-xb+a-b)}:\frac{2y}{4x^2-4}\right)\cdot\frac{a^2-2ab+b^2}{x^3-x^2}$$
 [a^2-ab]

$$\frac{a^3+1}{3a^2+3}: \frac{a^2-1}{a^2+2a+1}: \left[\frac{a^3+3a^2+3a+1}{6(a^4-1)}\cdot (a^3+1)\right] \left[\frac{2}{a+1}\right]$$

$$\left[\left(\frac{9a - 3x}{x^3 - 2x} - 1 + \frac{3a}{x} \right) \cdot \frac{1 - x^2}{x - 3a} - \frac{x^3 - 1}{x^2 - 2} \right] : \frac{1 - x}{x}$$

$$\left[\frac{1}{2 - x^2} \right]$$

EQUAZIONI LINEARI INTERE

$$(x-3)(x+1) = (x-1)^2 + 4$$
 [S = \emptyset]

$$(x+3)^2 - (x+1)^2 = 4(x+2)$$
 [S = Q]

$$(x+1)(x-2)(3x+1) - 3(x-1)^3 + 5x = 3x^2 + (2x+1)^2 + 5$$

$$S = \left\{-\frac{1}{3}\right\}$$

$$\left[(5x-2)(3-x) - x^3 - 13x + 6 = (x+5)^2 + 4 - (x+2)^3 \right]$$

$$(3x-2)^2 + (x-1)(x+1) = 5x(2x+1) - 3[2(x-1) - (-1)]$$
 [S = {0}]

$$10 + 8x(x^{2} + 1) - [4(x - 1) - 3(2x - 1)] + (x + 1)^{2} = (2x + 1)^{3} + 8 - [(3x + 2)^{2} + 2x(x - 2)]$$

$$S = \left\{-\frac{1}{2}\right\}$$

$$\frac{4x-1}{9} - \frac{1}{6} + \frac{(x-1)^2}{3} = \left(1 - \frac{1}{3}\right)x^2 - \frac{1}{9}\frac{(3x-1)(2x+1)}{2}$$
 [S = {0}]

$$\frac{3x+1}{6} - \left(1 - \frac{1}{4}\right)\left(x - \frac{1}{2}\right)x - \left(\frac{x-2}{2}\right)^2 = \frac{1}{2}x\left(\frac{11}{4} - 2x\right)$$
 $\left[s = \left\{\frac{5}{3}\right\}\right]$

$$\frac{11x-3}{3} + \left(\frac{x+1}{2}\right)^3 - \frac{3}{2}x\left(\frac{1}{2}x-1\right)^2 = \frac{x+1}{4} \cdot \frac{7x-2}{2} - \frac{(x-4)(x^2+1)}{4} \qquad \left[S = \left\{\frac{3}{4}\right\}\right]$$

$$\frac{(x+2)^2}{4} - (1-2x)^3 + \frac{1}{8}x = \frac{1}{4}x\left(\frac{57}{2} - 47x + 32x^2\right)$$
 [S = Q]

$$\frac{(2x-1)(3x+5)}{4} - 10\left(\frac{1}{3}x+1\right)^2 + \frac{5}{12} = \frac{1}{2}x^2 + \frac{x-2}{3} - \frac{(x+3)^2}{9}$$
 [S = {-2}]

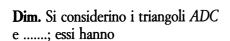
GEOMETRIA – CRITERI DI CONGRUENZA

10 Sui prolungamenti della base AB di un triangolo isoscele ABC si considerino due segmenti congruenti AD e BE. Dimostrare che il triangolo DEC è isoscele.

> Ipotesi $AC \cong CB$ D, A, B, E allineati

 $DA \cong BE$

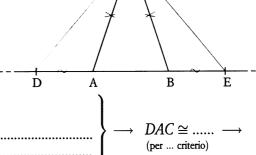
Tesi DEC isoscele



 $AC \cong$ per ipotesi

..... $\cong BE$ per ipotesi $\widetilde{CAD} \cong$ perché angoli supplementari.....

 \longrightarrow \cong CE \longrightarrow il triangolo è isoscele sulla base



c.v.d.

 $\widehat{BAH} \cong \widehat{HAC}$

..... ≅

 $CK \cong CH$

(lati corrispondenti in triangoli congruenti)

Siano AH e BK le bisettrici degli angoli alla base di un triangolo isoscele ABC. Dimostrare che $CK \cong CH$.

Dim. Si considerino i triangoli *CKB* e *CHA*.

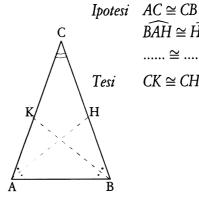
Essi hanno

 $CB \cong CA$ per

ÂCB $\widehat{CBK} \cong \widehat{CAH}$ perché metà degli angoli alla base

 \longrightarrow CKB \cong CHA \longrightarrow CK \cong CH.

(per ... criterio) (lati in triangoli

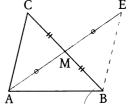


Si prolunghi la mediana AM di un triangolo ABC di un segmento $ME \cong AM$. Dimostrare che i segmenti AC e BE risultano congruenti.

Ipotesi A, M, E allineati

.....

Tesi



Dim. Si considerino i triangoli *AMC* e *MBE*; essi hanno

 $CM \cong$ per

 $AM \cong \dots$ per $\widehat{AMC} \cong \dots$ perché angoli (lati.....

in triangoli.....) c.v.d.

scele AB AD e BE	ngamenti dei lati CA e CB di un triangolo iso- C si considerino rispettivamente i segmenti tra loro congruenti. Detto N il punto di inter- ei segmenti DB e AE, si dimostri che il triangolo oscele.
Ipotesi	$CA \cong CB$ $Tesi$ ABN isoscele C, A, D allineati
	<i>DA</i> ≅
Dim. Si o	onsiderino i triangoli ABD e; essi hanno
AB in	$\rightarrow ABD \cong \longrightarrow$
<i>DAD</i> =	perche angoli (per criterio)
$\longrightarrow \widehat{DBA}$	\cong \longrightarrow ABN è isoscele, con base AB, perché
(angoli corris	c.v.d.
nello stes	iangolo equilatero ABC, sui prolungamenti dei lati AB, BC, CA si prendano, sempre so senso, tre segmenti BD, CE, AF congruenti fra costrare che il triangolo FDE è equilatero.
·	tesi $AB \cong BC \cong CA$ A, B, D allineati
Tes	T A
essi hann	onsiderino i tre triangoli AFD, BDE,;
$AD \cong BE$	S ≅ perché somme di segmenti rispettivamente congruenti ≅ per
dato. I $FD \cong$	$\widehat{OBE}\cong$ perché angoli
15 Di due tr lati <i>BC</i> e	iangoli ABC e $A'B'C'$ si sa che $AB \cong A'B'$, $BC \cong B'C'$ e che le mediane relative ai $B'C'$ sono congruenti. Dimostrare la congruenza dei triangoli ABC e $A'B'C'$.
Ipo	tesi $AB \cong A'B'$ $BC \cong \dots$ M
Tes	$i ABC \cong A'B'C' \qquad \qquad A \qquad \qquad B \qquad A' \qquad \qquad B'$

Dim. Si considerino i triangoli ABM e A'B'M';

essi hanno

Consideriamo ora i triangoli ABC e A'B'C'; essi hanno

- **7.** Sia *ABC* un triangolo isoscele di base *AB*. Si prolunghi *AB* dalla parte di *B* di un segmento *BE*, e si prolunghi *AB* dalla parte di *A* di un segmento *AD*, in modo che *AD* sia congruente a *BE*. Congiunto *C* con *D* e con *E*, dimostrare che il triangolo *DEC* è isoscele. [Occorre prendere in esame i triangoli *DAC* e *CBE...*]
- **8.** Si consideri un triangolo equilatero *ABC*. Si prolunghino i lati *AC*, *CB*, *BA* rispettivamente dalla parte di *C*, *B*, *A* di tre segmenti *CE*, *BF*, *DA* tra loro congruenti. Dimostrare che *DEF* è un triangolo equilatero.
- **9.** I lati CA e CB di un triangolo isoscele ABC di vertice C, vengono prolungati, rispettivamente dalla parte di A e di B di due segmenti congruenti AM e BN. Dimostrare che:
- 1) $MB \cong AN$
- 2) CAN \(\sim MBC
- 3) $MO \cong ON$, essendo O il punto di intersezione tra MB e AN.
- **10.** Si consideri un triangolo isoscele *ABC*, di vertice *A*. Si prolunghino i lati *AB* e *AC*, dalla parte di *A*, rispettivamente di due segmenti *AE* e *AF* congruenti. Si dimostri che $BF \cong EC$.

L' insegnante

Gli alunni